Innovative Fire Ventilation Systems

FOR PARKING GARAGES AND UNDERGROUND PARK LOTS.

Выставка "Security centre. Engineering and technical safety" 2015

3rd national exhibition-forum

Minsk, Belarus June 4, 2015

Agenda [2.3]

General information about Smoke Control Systems

Fire ventilation for enclosed car parks

- General information
- Methods of calculation and their implementation in Europe for Smoke dilution systems ("Smoke Clearance Systems")

Traditional ducted systems versus Innovative Impulse ventilation systems

SMOKE DILUTION SYSTEMS

Ducted extract systems

In General

The most engineers and designers are using traditional ducted systems. Due to the fact that are only know this technology of air distribution and air movement.

The typical layout of these mechanical ventilation systems consist of [1]:

- Using a ductwork
- Ventilations grilles as extraction points
- Smoke extraction fan(s)
- Air inlets

The most engineers and designers are using traditional ducted systems. Due to the fact that are only know this technology of air distribution and air movement.

The typical layout of these mechanical ventilation systems consists of [2]:

- Positioning of the extraction points A usual positioning of the ventilation grilles is:
 - > 50% high level extract
 - 50% low level extract

Fire ventilation for enclosed car parks

SMOKE DILUTION SYSTEMS

Ducted extract systems

In General

SMOKE DILUTION SYSTEMS

Ducted extract systems

In General

NEXT PAGE

The main issues which often cause problems for designer are:

- Ductwork runs underneath the ceiling
 - \rightarrow Reducing the height limit for the vehicles !
- Downstand beams require the ducting to be set down below them
 - → This diminishing the height even further !
- Low level extract points are required
 - \rightarrow Often needing protective barriers to surround them !

SMOKE DILUTION SYSTEMS

Impulse ventilation systems

The principle

Impulse ventilation systems push the air towards a single extract point. Rather than pulling it to multiple extract points as a ducted extract system would.

The typical layout of these ventilation systems consist of:

- Impulse Jet Fans located under the ceiling
 - → Create an air flow towards the extract point, moving smokes and fumes with it.
- Smoke extraction fan(s)
- Air inlets

SMOKE DILUTION SYSTEMS

Impulse ventilation systems

The principle

The basic principle is as follows [1]:

The Impulse Jet Fans generate thrust and add momentum to the air. This means:

SMOKE DILUTION SYSTEMS

The principle

The basic principle is as follows [2]:

Impulse ventilation systems

- The Impulse Jet Fans generate thrust and add momentum to the air. This means:
 - The mass of air get an moment of force.
 - A small volume of air with higher speed, moves a large volume of air with a lower speed.

SMOKE DILUTION SYSTEMS

Impulse ventilation systems

The principle

The basic principle is as follows [3]:

- The number and location of fans are carefully chosen to match the system design requirements.
- It must ensured that there are no dead spots for fumes and smoke to stagnate and collect.

Traditional ducted extract systems versus Innovative Impulse ventilation systems

Which works more efficiently ?

Relating to circulation of air.

Ducted systems versus Impulse ventilation systems

Example

- Dimensions : 60,0 x 25,0 x 2,5 m (length x width x height)
- Base area : ~1.500 m² | Volume : ~3.750 m³
- Air exchange rate : 10 ACH
- Necessary air volume flow : ~37.500 m³/h

Ducted systems versus Impulse ventilation systems

Example

- The comparison is done by a CFD simulation. (CFD is the abbreviation for "Computational fluid dynamics")
 - Stereometry of the garage

Ducted systems versus Impulse ventilation systems

Example

- Ducted mechanical extract system
 - Stereometry | Layout of the ductwork

Ducted systems versus Impulse ventilation systems

Example

- Impulse ventilation system
 - Stereometry | Position of the Impulse Jet fans

Ducted systems versus Impulse ventilation systems

Comparison: Air flow Extraction points of the ductwork

NEXT PAGE

COÉ

Ducted systems versus Impulse ventilation systems

The impulse ventilation systems have a much better efficiency. This comparison is for the day-day-ventilation.

To reduce the carbon monoxide (the CO concentration).